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Table 1: Comparison of bioleaching efficiencies & metal recovery values.
Comparison of Space Lab experimental values and reported theoretical values.
D: Bioleaching duration in days, E: Leaching efficiency, R: Metal recovery (Space
Lab: [leachate] = [tail] — [head]; mg/L), N/R: Not reported. Si was not able to be

. Optimize leaching conditions of heterotrophs for best metal leaching;

. Optimize conditions for best sugar production from photoautotrophs;
. Optimize metal recovery from liquid media;

accurately determined in our leachate due to its high instability in aqueous | 4. Test closed-loop efficiency of photoautotrophs feeding bioleachers
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